财经 >   >  正文

分数乘分数教学设计 世界微动态

评论

以下是小编为大家准备的分数乘分数教学设计,欢迎大家前来参阅。如果这17篇文章还不能满足您的需求,您还可以在本站搜索到更多与分数乘分数教学设计相关的文章。

篇1:《分数乘分数》教学设计

[教学内容]


(相关资料图)

教科书第45-46页的例4、例5及相应的试一试,完成随后的练一练和练习九第1-5题。

[教材分析]

这部分内容先教学分数与分数相乘的计算方法,再通过比较,引导学生把分数与分数相乘的计算方法推及分数与整数相乘,帮助学生形成对分数乘法相对完整的认识。

例4先让学生借助直观图形,初步理解的、的的含义;再让学生联系示意图所显示的结果和分数乘法的意义,列出相应的乘法算式,算出两个分数相乘的积,建立分数与分数相乘的计算方法的初步猜想。例5让学生验证猜想,在操作探究中进一步理解分数乘分数的意义,启发学生以直观的方式探索分数乘分数的计算结果。然后组织学生观察例4、例5中几道题目的计算过程和结果,比较分析,归纳出分数和分数相乘的计算方法。其后,通过填空形式启发学生用分数与分数相乘的计算方法计算整数与分数相乘,把计算方法推及分数与整数相乘,促使学生从整体上把握分数乘法的计算方法,建立合理的认知结构。最后,教材举例介绍了计算分数乘法时更为简单的一种约分方法,简化计算过程。

[教学目标]

1、通过例题的直观操作,理解分数与分数相乘的意义,初步掌握分数乘分数的计算方法。

2、在探究活动中,让学生运用已有知识和经验,主动进行分析、观察、猜想验证、比较、归纳的过程,进一步发展学生初步的演绎推理和合情推理能力。

3、使学生通过学习进一步体会数学知识间的内在联系,感受数学知识和方法的应用价值,提高学好数学的信心。

[教学过程]

一、口算,说说分数和整数相乘的方法。

(设计意图:抓住学生的认知起点,为学生进一步学习分数乘法的意义和计算方法作好铺垫。)

二、教学新知

(一)建立猜想。

1、出示例4的长方形纸,学生观察。

2、依次呈现长方形图,逐步提问。

(1)出示长方形纸的涂色部分。问:涂色部分是这张长方形纸的几分之几?

(2)出示斜线。问:画斜线的部分各占的几分之几?

追问:的、的又各是这个长方形纸的几分之几?

让学生明确:的是, 的是。(板书)

3、思考:求的是多少,可以列怎样的算式?求的呢

口答

4、小结:求一个分数的几分之几是多少也可以用乘法计算。

5、完成填空:

6、比一比:

这两个算式与以前的分数乘法有什么不同?(揭示课题)今天我们学习的是分数乘分数。

7、猜想:观察这2个式子,猜猜分数与分数相乘是怎么计算的?

让学生在观察的基础上初步说出自己的猜想。

(设计意图:理解分数与分数相乘的意义,是一个难点,因此在教学中,结合直观图,逐步的引导学生深入理解,在不断的追问、交流中形成完善的分数乘法的意义,获得独特体验,同时建立了初步的计算方法的猜想。)

(二)验证猜想。

谈话:这个猜想很有价值,对不对呢?我们还要举一些例子来验证。

1、出示例5的填空题和长方形图。

2、结合题意提问。

(1)说一说和分别表示的几分之几?

(2)你能根据刚才的猜想写出这两个算式的结果吗? 学生完成填空。

3、操作验证:

(1)提出要求:请大家先在两个长方形图中分别画斜线表示的和的,然后观察一下结果和你猜想的得数一样吗?

(2)学生操作活动,一生板演,师巡视

(3)组织交流,证实猜想是正确的。

(三)比较归纳。

1、引导学生仔细观察例4、例5四道算式:

提问:在这些算式中,你发现积的分子、分母与两个因数的分子、分母各有什么关系?

2、在学生独立思考基础上,再在小组里交流。

3、在交流中归纳总结方法;分数和分数相乘,用分子相乘的积作分子,分母相乘的积作的分母。

(设计意图:计算方法的得出是学生经历了猜想、验证、观察比较、概括归纳等一系列的数学思维活动后得出的,教师在活动中适时引导,学生则主动建构,在这个过程中学生的自主学习能力得到了发展,也体验到了数学学习的乐趣。)

(四)试一试

1、学生尝试解答,指名板演,核对时说一说怎样想的?

2、明确:计算过程中,能约分的,要先约分再算出结果。

三、方法推广。

1、出示:请用分数和分数相乘的方法计算下面各题

2、提示:整数都可以看成分母是1的分数。

3、学生尝试解答完成填空。指名板演。

4、追问:分数与分数相乘的计算方法适用于分数与整数相乘吗?为什么?

5、说明:分数乘法也可以像下面的这样计算,教师示范:

6、小结:今后计算分数乘法时,照上面的样子去做,而不必把整数改写成分母是1的分数,这样比较简便。

(设计意图:在前面探究的基础上,提供空间和时间让学生自主探究,培养了学生运用已有知识和经验解决问题的能力,教师再加以介绍点拨,促使学生从整体上把握分数乘法的计算方法。)

四、巩固练习。

1、完成练一练

学生独立完成,四名学生板演。

交流时选择部分题目,让学生说一说计算过程。注意书写格式。

2、完成练习九第1题

先让学生独立完成后,再组织交流。使学生明白,要求小时耕地公顷,就是求 公顷的是多少。

3、完成练习九第3题

学生独立判断,分析错误原因,并进行订正。

4、完成练习九第4题

学生先直接在书上写出得数,再引导学生比较每组的两道题,说说计算的过程有什么相同和不同的地方。

(设计意图:由学生自己探索得到的知识,最希望得到应用。利用好教材提供的练一练、改错比一比等多种形式的练习,让学生在练习中进一步巩固新知,并学会反思,养成检验的好习惯。)

五、总结

本节课学习了分数乘分数,你有什么收获?我们是怎么得到这个计算方法的`?

(设计意图:必要的学习小结可以帮助学生养成自我反思的习惯,提高他们自我梳理知识的能力,提升学习方法。)

六、课堂作业

练习九第2题、第5题

篇2:《分数乘分数》教学设计

【教学内容】

人教版《义务教育课程标准实验教科书・数学》六年级上册第10页例3,第11 页例4。

【理论依据】

《新课程标准》提出:有效的数学学习活动不能单纯地依赖模仿与记忆 ,动手实践、自主探索与合作交流是学生学习数学的重要方式。本节课更注重的是学生对算理的理解。教学中我改变以往例题、示范、讲解为主的教学方式,改变以记忆法则,机械训练为主的学习方式。为了突破难点,我主要采用以下三个措施:1、实践操作,《新课程标准》提出:实践活动是培养学生进行主动探索与合作交流的重要途径。数学教学活动将是学生经历一个数学化的过程,是学生自己建构数学知识的活动。为了让学生亲身经历知识形成的过程,我让学生动手操作,通过折、画、涂,使抽象的知识变得直观形象。2、自学探究,《新课程标准》提出:学生是学习的主人, 把课堂主动权交还给学生。我把算理的分析思路设计成一个个有层次的问题,制作成学习稿,让学生根据自学提纲来一步一步思考,给学生提一个较大的探索空间去领悟算理。3、说算理。通过“小老师”说算理,小组合作人人说算理等环节,让学生用自己的语言表达分析思路,完成思维的内化过程,发展学生的思维能力和口语表达能力。

【教材分析】

《分数乘分数》属于数与代数领域,是六年级上册第二单元《分数乘法》的教学内容。本节课是本单元的第二节课,是学生在掌握分数与整数相乘的基础上进行的,由于分数乘分数的意义是分数乘整数意义的扩展,且计算算理较难理解,这部分内容是本节课教学的重点也是难点。教材第10页例3从实际问题引入,用工作粉刷墙壁的图创设问题情境,给出条件,提出问题。

从解决“几分之一与几分之一相乘”到“两

个一般分数相乘”,力图让学生经历一个由浅入深、由易到难的探究过程。为突破重难点,教材用操作(涂色)的方法引导学生探索计算方法,让学生根据操作的过程与结果推导出计算方法,经历算理的推导过程。教材第11页例4从蜂鸟飞行的实际问题引入。通过计算,使学生明确分数乘分数计算也应该先约分再乘,这样计算比较简便,并掌握怎样先约分。教材接着提出“5分钟飞行多少千米?”的问题,这是分数乘整数的计算,前面已经学过,这里一方面把分数乘法的两种形式集中呈现,加强它们之间的对比与联系;另一方面提出分数和整数相乘怎样约分的问题,使学生知道分数的分母与整数可以直接约分。

【学生分析】

在学习本节课知识前学生已经学习了分数、整数、整数乘分数,理解了分数乘法的意义。分数乘分数的计算方法是比较容易掌握的,但要学生了解知识的产生过程就比较抽象了。根据教者所任教的本班学生实际情况来看,学生习惯于“先学后教――当堂训练”的教学模式,因此能适应本课时的“根据自学稿自学”的教学活动。利用画图的直观性理解和分析问题,也是学生在以前的学习活动已有的经验。在教学过程中,要注意处理好的三个地方是:

(1)学生自学时,教师对学困生的辅导;(

2)“小老师”归纳算理时,教师的引导作用;

(3)小组合作,人人说算理时,怎样让尽量多的学生参与期中,让活动取得最大的效果。

【三维目标】

1、知识与技能

(1)理解分数乘分数意义和算理。

(2)掌握分数乘分数的计算方法。

(3)会用分数乘法的有关知识解决生活中的基本数学问题。

2、过程与方法

(1)经历动手操作、画图表示、观察、交流、推导、归纳等探索分数乘分数计算方法的过程,发展学生的观察、动手、分析和推理等能力。 (2)感受画图分析问题、研究问题的直观性

3、情感、态度与价值

(1)体验分数乘分数计算方法的探索性,经历知识生成的过程,激发学习数学的兴趣。

(2)体会数学知识间的内在联系,感受数学知识和方法的应用价值,提高学好数学的信心。

【教学重点】

理解分数乘分数的算理并能正确计算。

【教学难点】

理解分数乘分数的算理。

【教具准备】

多媒体课件

【学具准备】

1张长10厘米,宽8厘米的长方形纸条。

【教学过程】

篇3:《分数乘分数》教学设计

教学内容:

苏教版义务教育教科书《数学》六年级上册第34~35页例4~5、试一试和练一练,第37页练习六第1~5题。

教学目的与要求:

1、使学生知道分数乘分数的计算法则也适用于整数和分数相乘,把分数乘法统一成一个法则。进一步巩固分数乘法的计算法则。

2、使学生经历解决问题的探索过程,进一步培养观察、比较、分析、推理的能力,体验数学学习的乐趣。

教学重点与难点:

整数乘分数的计算法则。

教具:

长方形纸、水彩笔。

教学过程:

一、创设情境

以前我们学习了分数的意义,下面请同学们看黑板上贴的长方形纸,涂色部分分别表示这张纸的几分之几?随着学生的回答,教师继续对它们进行操作,并引出新课

二、组织探究

1、教学例4出现教材中的图形

然后问:画斜线部分是的几分之几?又是这个长方形的几分之几?

由此明确:的是,的是。

启发学生进一步思考:求的是多少,可以怎样列式?

求的呢?

师问:你能列算式并看图填写出书中的结果吗?

打开书P34完成

提示:根据填的结果各自想想怎样计算分数与分数相乘?

学生进行讨论得出:分数与分数相乘,分子相乘做分子,分母相乘做分母

2、教学例5

(1)让学生说说×和×分别表示的几分之几?

你能用前面得出的结论计算这两道题吗?

学生试做

订正完后问:你能用什么方法来验证你的计算结果呢?

(2)验证比较

让学生在自己准备的长方形纸上先涂色表示。

再画斜线表示的和的。

学生动手操作,教师巡视对学困生进行指导。

看看操作的结果与你计算的结果是否一致?

学生观察比较

3、归纳总结

比较刚才计算的每个积的分子、分母与它的因数的分子分母,讨论有什么发现?

得出分数乘分数的计算方法:分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。

三、练习

1、完成的试一试

提醒学生注意:计算分数与分数相乘时,能约分的要先约分在计算

通过交流进一步明确计算分数与分数相乘的计算方法

四、分数与分数相乘的计算方法的推广

同学们,下面着几道题你回计算吗?

出示:

请同学们先完成P35的填空,提醒学生把整数看作分母是1的分数来计算

讨论:分数与分数相乘的计算方法适用于分数和整数相乘吗?为什么?

学生分组讨论

明确:

(1)整数可以看作分母是1的分数,所以分数与分数相乘的计算方法也适用于分数和整数相乘

(2)实际计算时可以直接按以前学过的方法计算分数和整数相乘,而不必把整数改写成分母是1的分数,这样比较简便

(3)也可以整数与分数直接进行约分后再计算。这样更简便

教师进行示范如P35

2、练习

完成P35的练一练

引导学生用直接约分的方法进行计算

五、综合练习

1、做练习六的第1题

先在图中画一画再列式计算

2、做练习六的第3题

说出错的原因

3、做练习六的第4题

看谁算的最快

六、全课小结

通过这节课的学习,你有什么收获?还有什么疑惑?

七、作业

练习六的第2、5题

篇4:分数乘整数教学设计

分数乘整数教学设计

我在去年暑假听了数学特级教师刘德武老师的《分数乘整数》这节课,很有感受,把刘老师的思路加以整理,创新的教学设计为:

一、引入,明确今后主要的学习内容。鼓励学生相信自己能学好。

二、口算,感受分数乘整数的含义

1、读出算式,并口算出结果:

1/5+2/5= 1/4+1/4= 2/6+3/6+1/6= 1/16+3/16= 2/9+2/9= 2/9+2/9+2/9+2/9+2/9+2/9= 2/9+2/9......2/9(30个)

2、感受分数乘整数的意义

30个2/9相加读起来太麻烦了,(让学生读时,很多学生都笑了。)有没有简单的表示方法?(学生会想到用乘法表示成2/9×30)然后让学生说一说2/9×30表示的含义。让学生再说一些分数乘整数的算式,教师板书,然后从中选则一些让学生说一说意义。

三、尝试计算,归纳方法

1、尝试计算。

让学生试着计算2/9×4=、说一说计算方法,允许有不同的方法。(这是课的一个重点)再计算2/9×5=,然后让学生自己思考分数乘整数的计算方法。

2、自己选择练习

自己选则的内容,学生计算的积极性会更高,让学生从上面学生说出的算式中选择两道题进行计算。

3、概括分数成整数的计算方法

让学生自己归纳计算方法,并尝试用字母表示这个计算方法如:b/a×c=b×c/a。

总之,给学生发现的机会,他们能自己做的我们不告诉他们。如1、他们会发现几个相同分数相加用乘法比较简便,能发现分数乘整数的意义。2、他们能自己计算分数乘整数的式题。3、他们会自己概括出分数乘整数的计算方法。这些方面我们都要给学生机会。

同时我感觉到,这节课是六年级数学的第一课,在教学时还要注意以下几点:

一、给孩子鼓劲儿,让孩子看到希望

告诉他们“我们这一学期数学课主要学习的都是有关分数的.知识,六个单元中有四个单元都是有关分数的知识。这部分知识和以前联系不大,只要从现在开始,加油,都能把这部分知识学好!”老师也要满怀信心的对待每一个孩子,给不同层次的孩子以机会,真正在课堂上关注他们,让他们学得幸福,感受到成功,感受到付出之后的快乐,相信自己能越来越好!

二、别让孩子掉队,给接受能力稍慢的孩子吃一吃偏饭

我们的老师都很敬业,这一点我从来都不怀疑,但是有时后我们的方法不够合适。就拿给学困生辅导来说吧,很多老师都要面临这个问题,不管是否课改,一些基本的东西都是要孩子会的。在给学困生补习的时候,要注意(1)及时,有些教师总是快考试的时候才想到要给差生辅导,那时侯内容太多,他们已经接受不了了。所以要及时给他们辅导。(2)要让他们自己说解题的思路,说做某一类题的时候应该注意什么,不要让他们光做题,不要让他们死记硬背一些东西,要让他们理解。

三、理解分数乘法含义、尝试计算

从分数加法的口算引入,2/5+1/5=、3/7+2/7=,从2/9+2/9+2/9.......2/9(30个2/9相加)让学生感受到这样的算式非常罗嗦,不好读,而且不好计算。让学生自然想到用乘法算,2/9×30让学生自己说一说表示的含义,理解分数乘法的意义。

同时让学生说出另外一个分数乘以整数的算式,丛中选择一些算式让学生说一说表示的含义。然后试着计算2/9×4,鼓励学生自己想办法计算,可以用不同的方法。2/9×5,让学生独立计算,并试着用自己的话概括分数乘整数的计算方法。练习,从学生自己说出的算式中选择两道计算。

篇5:分数乘整数教学设计

教学目标

使学生理解分数乘整数的意义,掌握分数乘整数的计算法则。

教学重点

使学生理解分数乘整数的意义,掌握分数乘整数的计算法则。

教学难点

引导学生总结分数乘整数的计算法则。

教学过程

一、设疑激趣

(一)下面各题怎样列式?你是怎样想的?

5 个12 是多少?10 个23 是多少?25 个70 是多少?

(概括:整数乘法表示求几个相同加数的和的简便运算)

(二)计算下面各题,说说怎样算?

+ + = + + =

说一说,这两道题目有什么区别和联系?第二小题还有什么更简便的方法吗?请你自己试一试。

同学之间交流想法: + + = = =

×3 这个算式表示什么?为什么可以这样计算?

教师板书: + + = ×3=

为什么只把分子与整数相乘,分母10 不和3 相乘?

二、提出问题

(一)出示例1 小新、爸爸、妈妈一起吃一块蛋糕,每人吃 块,3 人一共吃多少块?

1、读题,说说 块是什么意思?

2、根据已有的知识经验,自己列式计算

三、解决问题

(一)学生汇报,并说一说你是怎样想的?

方法1 : + + = = = (块)

方法2 : ×3= + + = = = = (块)

(二)比较这两种方法,有什么联系和区别?

联系:两种方法的结果是一样的`。

区别:一种方法是加法,另一种方法是乘法。

教师板书: + + = ×3

(三)为什么可以用乘法计算?

加法表示3 个 相加,因为加数相同,写成乘法更简便。

(四) ×3 表示什么?怎样计算?

表示3 个 的和是多少?

用分子2 乘3 的积做分子,分母不变。

(五)提示:为计算方便,能约分的要先约分,然后再乘。

四、归纳、概括:

(一)结合 = ×3= 和 + + = ×3= ,说明分数乘整数的意义与整数乘法的意义相同,都是表示求几个相同加数的和的简便运算。

(二)分数乘整数计算方法:用分子和整数相乘的积做分子,分母不变。能约分的先约分。

五、拓展应用

(一)基本练习

1、改写算式

+ + + = ( )×( )

+ + + + + + + = ( )×( )

2、只列式不计算:3 个 是多少? 5 个 是多少?

3、计算(说一说怎样算)

×4 ×6 ×21 ×4 ×8

思考:为什么先约分再相乘比较简便?

(二)综合练习

应用题

(1 )一个正方体的礼品盒,底面积是平方米,要想将这个礼品盒包装起来,至少需要多少包装纸?

(2 )美术馆要进行美术展览,有5 张画是边长 米的正方形的,如果为这几幅画配上镜框,需要木条多少米?

(三)拓展练习

1、一条路,每天修 千米,4 天修多少千米?

2、一条路,每天修全路的 ,4 天修全路的几分之几?

六、板书设计

分数乘整数

分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。

例1、小新、爸爸、妈妈一起吃一块蛋糕,每人吃 块,3 人一共吃多少块?

用加法算: + + = = = (块)

用乘法算: ×3= + + = = = = (块)

答:3 人一共吃了 块。

分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

篇6:分数乘整数教学设计

教学目标:

结合具体事例,经历自主解决问题、学习分数乘整数的计算方法的.过程。

理解分数乘整数的计算方法,会计算分数乘整数的乘法。

体验用乘法解决连加问题的价值,激发学习新知识的愿望。

教学重点:分数乘以整数的计算方法。

教学难点:正确运用先约分,再相乘的方法进行计算。

教学过程:

一、复习铺垫

1、让我们先来做几道口算题,你能直接口算出结果吗?

出示:

3/8 +1/8= 1/3+1/5= 7+9=

1/4+1/4+1/4= 2/9 +2/9= 3+3+3+3+3+3=

2、学生口答。

3、最后一题你是怎么口算的?还可以怎样口算?――引导学生说出用乘法3×5或5×3来计算。

4、师小结:是啊,求几个相同加数的和的简便运算可以用乘法。

质量问题

教师口述问题,让学生用自己喜欢的方法解决。

交流学生计算的方法和结果。

2/5+ 2/5+ 2/5 2/5 ×3

=2+2+ 2/5 = 2*3/5

=6/5( 千克 ) = 6/5( 千克 )

3、比较这两种方法,有什么联系和区别?

联系:两种方法的结果是一样的。

区别:一种方法是加法,另一种方法是乘法。

教师板书: 2/5+ 2/5+ 2/5= 2/5×3

为什么可以用乘法计算?

加法表示3个2/5相加,因为加数相同,写成乘法更简便.

2/5×3表示什么?怎样计算?

表示3个2/5的和是多少?

2/5+2/5 + 2/5=2+2+2/5 =2*3/5 = 6/5 用分子2乘3的积做分子,分母不变.

6、提示:为计算方便,能约分的要先约分,然后再乘.

三、归纳、概括:

分数乘整数,用分子和分母相乘的积做分子,分母不变

试一试

让学生独立观察图并列式计算。交流时,说一说是怎样列式的,怎样算的。

练一练

教学后记:

这节课的教学任务主要有两点,就是掌握分数乘整数的意义,以及掌握分数乘整数的计算法则,在整数乘法 上,分数乘整数的意义学生比较易于掌握,我利用它的意义改写成 ,进而从 ,这一环节,我特别注重引导学生,观察板书,并及时给予提示,所以学生的分数乘整数的计算方法掌握得不错。但是不足的是,学生在约分时,有部分学生没有约分完,以后要不断训练学生约分的方法。

篇7:分数乘整数教学设计

教学内容:

课本8―9页例1、例2、做一做、练习二第1、2题。

教学目标:

1、让学生在已有的分数加法的基础上,通过小组合作,自主探究建构,使学生理解分数乘整数的意义,掌握分数乘整数的计算方法,能够应用分数乘整数的计算法则,比较熟练地进行计算。

2、让学生在合作学习、汇报展示、互动交流中,体验学习带来的喜悦,培养学生的学科兴趣和学习能力。

3、 让学生在课堂学习中感悟到数学知识的魅力,领略到美。教学重点:让学生理解分数乘整数的意义,掌握分数乘整数的计算方法。

教学难点:

总结分数乘整数的计算方法。

教学过程:

一、创设情境,提出学习目标。

1、创设情境:同学们,谁敢与老师比一比,看谁列式列得比较快?

比赛题目为:3个 3/10 相加的和是多少?6个 3/10 相加的和是多少?

师:同学们的表现真是太棒了?这节课我们就一起来研究有关《分数乘整数》的数学问题?

2、提出学习目标

让学生先说一说,再出示学习目标:

(1)分数乘整数的计算方法。

(2)分数乘整数的意义与整数乘法的意义是否相同。

二、展示学习成果

1、小组内个人展示

学生独立自学课本8―9页例1、例2,完成“做一做”(教师相机进行指导,收集学生的学习信息,重在让学生展示不同的思维方法和错例,特别是引导小组内学生之间的交流与探讨)

2、全班展示

(1)算法展示。

生1:利用乘法与加法的关系进行计算。

2/15×4=2/15+2/15+2/15+2/15=8/15

生2:先计算出结果,再进行约分。

5/12×8=5×8/12=40/12=10/3=

生3:在计算过程中能约分的先约分,再计算。

2×3/4=3/22与4先约分,再计算。

(2)比较三种计算方法,选择最优算法。

通过对比,让学生体会先约分再计算的方法比较简便,同时向学生说明先约分的书写格式。

(3)错例展示:

错例1:学生把整数与分子进行约分。 错例2:学生没把计算结果约成最简分数。

3、学生质疑问难,激发知识冲突。

(1)针对同学的展示,学生自由质疑问难。

(2)教师引导学困生提出问题:同学们,你在学习中碰到困难了吗?能把你遇到的困难说给大家听吗?那你对同学的展示有什么想法与建议吗?

4、引导归纳分数乘整数的计算法则。

分数乘整数的计算法则:分数乘整数,用分数的的分子和整数相乘的积作分子,分母不变;能约分的先约分,再计算。

三、拓展知识外延

1、完成课本12页练习二第1、2题。

2、生活中的数学

(1)一个正方形的边长是 4/3dm,它的周长是多少dm?

(2)老师从家到学校要步行10分钟, 如果每分钟步行 2/25千米,老师每天要走两个来回,每天一共要走多少千米?

四、总结反思,激励评价。

五、布置作业:

1、列式计算

(1)3个2/5是多少?

(2)7/12的6倍是多少?

(3)5/14扩大7倍以后是多少?

( 4)3/16与24的积是多少

2、智力冲浪:用12个边长都是 dm的正方形硬纸板可以拼成多少种形状不同的长方形?它们周长分别是多少?(a类同学做)

篇8:分数乘整数教学设计

分数乘整数教学设计

【教学内容】

人教版六年级数学上册第一单元《分数乘整数》。

【学习目标】

1.理解分数乘整数的意义。

2.掌握分数乘整数的计算方法,并能正确地进行计算。

3.感受知识之间的内在联系,提高自主探究与合作交流的学习能力,建立学好数学的信心。

【学情分析】

方式:

个别访谈(从50人中随机抽取10名学生)。

内容:

1.你知道整数乘法的意义吗?

2.同分母分数相加怎样计算?

3.分数乘整数谁会算?例如:5/24X8=

分析访谈结果:

学生对第1小题答对的有10人。第2小题答对的有8人,答错的有2人。第3小题答对的有1人,答错的有9人。通过访谈结果我发现对以前学过的整数乘法的意义只有少数学生表述不准确,因此在上课前我要布置学生回去复习整数乘法意义的有关知识,为本节课做铺垫。此外学生对同分母分数相加并不陌生,他们大多都能够正确说出计算方法,但问到分数乘整数谁会算时学生的解释难度很大,大多学生表述不准确。因此在教学时如何将学生已有的知识与计算方法进行迁移,成为本课教学的关键。

【重点难点】

理解分数乘整数的意义。

掌握分数乘整数的计算方法,并能正确地进行计算。

【教学具准备】

课件、练习本等。

【教学过程】

一、板书课题。

同学们,今天我们来学习“分数乘整数”(板书课题)。

二、出示目标。

这节课的目标是:

1、理解分数乘整数的`意义。

2、掌握分数乘整数的计算方法,并能正确地进行计算。

师:为了达到目标,下面请大家认真地看书。

三、自学指导。

呈现学习指导:认真看课本第2页到第3页的例1和例2。

1.看例1的情景图和计算过程,思考:分数乘整数的意义是什么?

2.分数乘整数是怎样计算的?计算时,怎样做比较简便?

(5分钟后,比谁能做对与例题类似的题!)

四、先学。

1.自学(看一看)

学生认真看书,教师巡视,督促人人都在认真地看书。

2.自做检测题(做一做):(课本第2页“做一做”的第1和2题,)找两名学生板演,其余学生做在练习本上做,教师认真巡视(不宜辅导学生),发现错例,板书于黑板上对应位置。

五、后教。

(一)更正。

师:写完的同学请举手。下面,请大家一起看黑板上这些题,发现问题的同学请举手。(由不同层次的学生依次更正黑板上的题)

提示:更正时用黄色粉笔,哪个数字错了,先划一下,再在旁边改,不要擦去原来的。

(二)讨论(议一议):

评议第一题。

1.看题,认为对的举手。为什么?

生说,师板书:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

2.看计算过程和结果,认为对的举手。

评议第二题(第2小题)

1.认为对的请举手,为什么?分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。强调:能约分的要提前约分。约分时,约得的数要跟原数上、下对齐。

2.评正确率、板书,并让学生同桌对改,有错的更正。

六、当堂训练。

1.课本第3页的做一做。

2.练习一第1题。

3.(作业)练习一2、3题。

七、全课总结。

同学们,今天我们学习了分数乘整数,它意义是什么呢?该怎样计算呢?计算时需要注意什么?你是怎样学会的?

下面,我们就来运用今天所学的知识来做作业,比谁的课堂作业能做得又对又快,字体又端正。

篇9:《分数乘整数》教学设计

教学目标

使学生理解分数乘整数的意义,掌握分数乘整数的计算法则。

教学重点

使学生理解分数乘整数的意义,掌握分数乘整数的计算法则。

教学难点

引导学生总结分数乘整数的计算法则。

教学过程

一、设疑激趣

(一)下面各题怎样列式?你是怎样想的?

5个12是多少?10个23是多少?25个70是多少?

(概括:整数乘法表示求几个相同加数的和的简便运算)

(二)计算下面各题,说说怎样算?

++=++=

说一说,这两道题目有什么区别和联系?第二小题还有什么更简便的方法吗?请你自己试一试。

同学之间交流想法:++==3××3=

×3这个算式表示什么?为什么可以这样计算?

教师板书:++=×3=

二、自主探索

(一)出示例1小新、爸爸、妈妈一起吃一块蛋糕,每人吃块,3人一共吃多少块?

1、读题,说说块是什么意思?

2、根据已有的知识经验,自己列式计算

三、交流、质疑

(一)学生汇报,并说一说你是怎样想的?

方法1:

方法2:

(二)比较这两种方法,有什么联系和区别?

联系:两种方法的结果是一样的。

区别:一种方法是加法,另一种方法是乘法。

教师板书:

(三)为什么可以用乘法计算?

加法表示3个相加,因为加数相同,写成乘法更简便。

(四)×3表示什么?怎样计算?

表示3个的和是多少?

用分子2乘3的积做分子,分母不变。

(五)提示:为计算方便,能约分的要先约分,然后再乘。

四、归纳、概括:

(一)结合=×3=和++=×3=,说一说一个分数乘整数表示什么?

求几个相同加数的和的简便运算。

(二)分数乘整数怎样计算?

用分子和分母相乘的积做分子,分母不变

五、巩固、发展

(一)巩固意义

1、改写算式

2、只列式不计算:3个是多少?5个是多少?

(二)巩固法则

1、计算(说一说怎样算)

思考:为什么先约分再相乘比较简便?

2、应用题

(1)一个正方体的礼品盒,底面积是平方米,要想将这个礼品盒包装起来,至少需要多少包装纸?

(2)美术馆要进行美术展览,有5张画是边长米的正方形的,如果为这几幅画配上镜框,需要木条多少米?

(三)对比练习

1、一条路,每天修千米,4天修多少千米?

2、一条路,每天修全路的,4天修全路的几分之几?

六、课后作业

(一)的3倍是多少?的10倍是多少?

(二)一个正方形的边长是米,它的周长是多少米?

(三)一种大豆每千克约含油千克,100千克大豆约含油多少千克?1吨大豆呢?

七、板书设计

分数乘整数

分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。

篇10:《分数乘整数》教学设计

教学目标:

1、让学生在已有的分数加法的基础上,通过小组合作,自主探究建构,使学生理解分数乘整数的意义,掌握分数乘整数的计算方法,能够应用分数乘整数的计算法则,比较熟练地进行计算。

2、让学生在合作学习、汇报展示、互动交流中,体验学习带来的喜悦,培养学生的学科兴趣和学习能力。

3、让学生在课堂学习中感悟到数学知识的魅力,领略到美。教学重点:让学生理解分数乘整数的意义,掌握分数乘整数的计算方法。

教学难点:

总结分数乘整数的计算方法。

教学过程:

一、创设情境,提出学习目标。

1、创设情境:同学们,谁敢与老师比一比,看谁列式列得比较快?

比赛题目为:3个3/10相加的和是多少?6个3/10相加的和是多少?

师:同学们的表现真是太棒了?这节课我们就一起来研究有关《分数乘整数》的数学问题?

2、提出学习目标

让学生先说一说,再出示学习目标:

(1)分数乘整数的计算方法。

(2)分数乘整数的意义与整数乘法的意义是否相同。

二、展示学习成果

1、小组内个人展示

学生独立自学课本8—9页例1、例2,完成“做一做”(教师相机进行指导,收集学生的学习信息,重在让学生展示不同的思维方法和错例,特别是引导小组内学生之间的交流与探讨)

2、全班展示

(1)算法展示。

生1:利用乘法与加法的关系进行计算。

2/15×4=2/15+2/15+2/15+2/15=8/15

生2:先计算出结果,再进行约分。

5/12×8=5×8/12=40/12=10/3=

生3:在计算过程中能约分的先约分,再计算。

2×3/4=3/22与4先约分,再计算。

(2)比较三种计算方法,选择最优算法。

通过对比,让学生体会先约分再计算的方法比较简便,同时向学生说明先约分的书写格式。

(3)错例展示:

错例1:学生把整数与分子进行约分。错例2:学生没把计算结果约成最简分数。

3、学生质疑问难,激发知识冲突。

(1)针对同学的展示,学生自由质疑问难。

(2)教师引导学困生提出问题:同学们,你在学习中碰到困难了吗?能把你遇到的困难说给大家听吗?那你对同学的.展示有什么想法与建议吗?

4、引导归纳分数乘整数的计算法则。

分数乘整数的计算法则:分数乘整数,用分数的的分子和整数相乘的积作分子,分母不变;能约分的先约分,再计算。

三、拓展知识外延

1、完成课本12页练习二第1、2题。

2、生活中的数学

(1)一个正方形的边长是4/3dm,它的周长是多少dm?

(2)老师从家到学校要步行10分钟,如果每分钟步行2/25千米,老师每天要走两个来回,每天一共要走多少千米?

四、总结反思,激励评价。

五、布置作业:

1、列式计算

(1)3个2/5是多少?

(2)7/12的6倍是多少?

(3)5/14扩大7倍以后是多少?

(4)3/16与24的积是多少

2、智力冲浪:用12个边长都是dm的正方形硬纸板可以拼成多少种形状不同的长方形?它们周长分别是多少?(A类同学做)

篇11:《分数乘整数》教学设计

教材分析

《分数乘整数》是苏教版小学数学第十一册第三单元的内容。这节的内容是在已学整数乘法的意义和分数加法计算的基础上进行教学的。分数乘整数的意义和整数乘法的意义相同,只是这里变成了分数。对今后求几个加数的和的简便运算用乘法来解决。注重培养学生的计算能力。

学情分析

学生已学过整数乘法的意义,约分和分数加法计算。学生可以利用分数加法来推导出分数乘整数时只需把分子和整数相乘的积做分子,分母不变。

学生在刚学习分数乘法时,可能会有时想不到先约分,在课堂教学时要注意加以强调。

教学目标

1、使学生理解分数乘整数的意义。

2、培养学生的合作探究意识和良好的逻辑思维能力。

3、让学生在学习中获得成功的体验。

教学重点和难点

重点:理解分数乘整数的意义。

难点:掌握分数乘整数的计算法则。

教学过程

1、让学生动手做绸花,加深了学生对求几个相同加数的和的简便运算用乘法来算。

2、让学生操作涂彩纸表示绸带,加强学生对分数意义的推算。

3、理解分数乘法的意义,认识分数乘法算式,加深理解两个因数相乘,交换因数的位置积不变。

4、小结。

篇12:分数乘整数教学设计

教学目标:

1.分数乘以整数的意义,掌握计算法则,正确计算分数乘以整数的算式题。

2.渗透事物是相互联系、相互转化的辩证唯物主义观点。教学重点:

分数乘以整数的意义及计算方法。

教学难点:

分数乘以整数的计算法则的推导。

教具准备:

多媒体课件。

教学过程:

一:复习

1.口算:

问:怎样计算?(分母不变分子相加)

2.根据题意列出算式:

(1)5个12是多少?

(2)3个14是多少?

列式:

(1)12+12+12+12或12×5

(2)14+14+14或14×3

题中的两个式子哪个简便?(12×5,14×3)

它们各表示什么意思呢?(5个12是多少?3个14是多少?)能用一句话概括这两个乘法算式的意义吗?(就是求几个相同加数和的简便运算。)

这是整数乘法的意义,它对于分数乘法适用吗?

二:讲授新课

1.出示课题明确学习目标。

2.出示自学题纲,让学生自学课本。

(1)分数乘以整数的意义是什么?与整数乘法的意义相同吗?

(2)分数乘以整数的计算方法是怎样的?它是怎样推导出来的?

(3)分数乘以整数的意义。

例1小新和爸爸、妈妈一起吃一块蛋糕,每人吃块,3人一共

吃多少块?

(1)读题,找已知条件和问题。(第人吃块,3人一共吃多少块?)

(2)分析,问:块是什么意思?(把一块蛋糕平均分成9分,

取其中2份。)

听回答,老师边重复边电脑演示(三层复式演示)。

把一块蛋糕(出示一个圆)平均分成9份(覆盖平均分的9

份),取其中2份(覆盖2份是红色的)。平均分成9份取其2份。

师:(结合图)说:“那块”是多大?(边说边演示)

师:每人吃一块(出示一块),3人一共吃了多少块?(再翻出两个块的投影。)

问:3个块是多少呢?(边说边翻投影)

平均分9份,取6份

(3)根据图意列出算式。

问:这个加法算式有什么特点?(三个加数相同。)

问:还可以怎么列式?(×3)

问:为什么?(三个加数相同)

问:这个算式你们学过吗?它是什么数乘以什么数?(分数乘以整数。)

师:这就是今天我们要学习的分数乘以整数。(板书课题)师:分数乘以整数表示什么意思呢?观察上面两个算式,并说出

×3的意义。(讨论)

(分数乘以整数的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。×3就是求3个是多少。)

3.分数乘以整数的法则。

(1)推导法则。

我们了解了分数乘以整数的意义,你想知道怎样计算吗?

a.导出计算方法。

你会计算吗?看哪些同学不用老师讲解就能依据转化思想把分数乘以整数这个新知识转为已经学过的旧知识来进行计算。(可以互相说互相看。)

如果学生写出这个步骤时,老师继续追问。

问:这道只是3个可以这样写,如果是100个或更多个,那该怎么办呢?

引导学生讨论得出:

又可以转化成什么式子呢?因为分子2+2+2=2×3,分母9=9,所以,可以转化成。

只是为了说明算理,计算时省略不写。(边说边加上虚线框。

b.归纳法则。

通过以上几个式题的计算,想一想分数乘以整数怎样计算呢?师:比一比,看哪个组的同学总结的语言准确又简练。小组讨论,总结出法则。

分数乘以整数,用分数的分子和整数相乘的积作分子,分母不变。(板书)

c.应用法则计算。

计算(做本上,投影反馈)

(约分数位对齐)

讨论,这两种方法哪种简单?为什么?

强调:能约分,要先约分;结果是假分数一定要化成整数或带分数。

(三)巩固练习

投影出示练习题。

(四)回顾整理:

教师引导学生回顾本届所学的内容。

(五)布置作业

自主练习的题目。

教学目的:

使学生理解分数乘以整数的`意义,在理解算理的基础上掌握分数乘以整数的计算法则,并能正确运用“先约分再相乘”的方法进行计算。

教学重点:

让学生理解算理,掌握计算法则

教学过程

一、复习。

1.5个12是多少?

用加法算:12+12+12+12+12

用乘法算:12×5

问:12×5算式的意义是什么?被乘数和乘数各表示什么?

2.计算:

问:这两个算式有什么特点?应该怎样计算?

教师总结:整数乘法的意义,就是求几个相同加数的和的简便运算。被乘数表示相同的加数,乘数表示相同的加数的个数。同分母分数加法计算法则是分子相加作分子,分母不变。通过将算式:改写成乘法算式,引出课题。

二、情境引入新课

1.教师出示例题图示:

例题:人跑一步的距离相当于代数跳一下的。人跑三步的距离是代数跳一下的几分之几?

(1)首先让学生分析题意,试着描述场景图。

(2)学生分组讨论:“人跑一步的距离相当于袋鼠跳一下的”是什么意思?如何理解“相当于”?

师:我们用线段帮助我们理解:画一条线段,表示袋鼠跳一下的距离。“人跑一步的距离相当于袋鼠跳一下的”,就要把袋鼠跳一下的距离即这一条线段看作单位“1”,把这条线段平均分成11份,其中的2份就表示人跑一步的距离。求“人跑3步的距离相当于袋鼠跳一下的几分之几?”就是求3个是多少?(教师在学生讨论的基础上将线段图逐步表示完整。)

(3)如何解决这个问题?

学生独立思考,开展讨论与交流。(基础好的学生可以提出加法和乘法两种解决方法)教师引导学生思考与讨论如何计算。因为分数加法的计算学生已经掌握,重点讨论×3如何计算。

师:我们观察加法算式的特点,3个加数有什么特点?(3个加数相同)我们求3个相同加数的和还可以怎样列式?

引导学生列出乘法算式。得出分数乘整数的计算方法:分母不变,分子与整数相乘的积作分子。

强调:分数乘整数的意义与整数乘法的意义相同,都是求几个相同加数和的简便运算。

(4)让学生自主总结归纳出分数乘整数的计算方法,并用比较简洁的语言表达出来。

2、延伸强化

教师出示例题2:,让学生先计算,再讨论。

问题:乘得的积是不是最简分数?应该怎么办?你是怎样约分的?有没有不同的方法?

教师总结:通过不同约分方法的比较,我们知道先约分再计算的方法比较简便。

教师板演约分的书写格式。3=×3这个算式表示什么?为什么可以这样计算?教师板书:++=×3=

二、自主探索(一)出示例1小新、爸爸、妈妈一起吃一块蛋糕,每人吃块,3人一共吃多少块?

1.读题,说说块是什么意思?

2.根据已有的知识经验,自己列式计算

三、交流、质疑

(一)学生汇报,并说一说你是怎样想的?

方法1:++===(块)

方法2:×3=++====(块)

(二)比较这两种方法,有什么联系和区别?

联系:两种方法的结果是一样的.

区别:一种方法是加法,另一种方法是乘法.

教师板书:++=×3

(三)为什么可以用乘法计算?

加法表示3个相加,因为加数相同,写成乘法更简便.

(四)×3表示什么?怎样计算?

表示3个的和是多少?

++====,用分子2乘3的积做分子,分母不变.

(五)提示:为计算方便,能约分的要先约分,然后再乘.

四、归纳、概括:

(一)结合=×3=和++=×3=,说一说一个分数乘整数表示什么?

求几个相同加数的和的简便运算.

(二)分数乘整数怎样计算?

用分子和分母相乘的积做分子,分母不变

五、巩固、发展

(一)巩固意义

1.改写算式

+++=×()

+++++++=()×()

2.只列式不计算:3个是多少?5个是多少?

(二)巩固法则

1.计算(说一说怎样算)

×4×6×21×4×8

思考:为什么先约分再相乘比较简便?

2.应用题

(1)一个正方体的礼品盒,底面积是平方米,要想将这个礼品盒包装起来,至少需要多少包装纸?

(2)美术馆要进行美术展览,有5张画是边长米的正方形的,如果为这几幅画配上镜框,需要木条多少米?

(三)对比练习

1.一条路,每天修千米,4天修多少千米?

2.一条路,每天修全路的,4天修全路的几分之几?

六、课后作业

(一)的3倍是多少?的10倍是多少?

(二)一个正方形的边长是米,它的周长是多少米?

(三)一种大豆每千克约含油千克,100千克大豆约含油多少千克?1吨大豆呢?

七、板书设计

分数乘整数

分数乘整数,用分数的分子和整数相乘的积作分子,分母不变.

例1.小新、爸爸、妈妈一起吃一块蛋糕,每人吃块,3人一共吃多少块?

用加法算:xx+xxx(块)

用乘法算:x×3=++xxx(块)

答:3人一共吃了块.

分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算.

篇13:分数乘整数教学设计

备教材内容

1、本课时学习的是教材2页的内容及相关习题。

2、例1以一家人吃蛋糕的情境引出分数乘整数的学习内容,使学生理解分数乘整数的意义及算理,掌握其计算方法。在学生掌握分数乘整数的计算方法的基础上,使学生进一步了解乘得的积一般应化成最简分数,掌握把积化成最简分数的两种方法。这节课是本单元的起始课,是学生学习分数乘除法的基础。

备已学知识

整数乘法的意义

求几个相同加数的和,可以用乘法计算。

分数的意义

把整体“1”平均分成若干份,表示这样的一份或几份的数叫做分数。

分数的基本性质

分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。

分数加法的计算方法

同分母分数相加,分母不变,分子相加。

备教学目标

知识与技能

1、理解分数乘整数的意义,掌握分数乘整数的计算方法。

2、能够应用分数乘整数的计算方法比较熟练地进行计算。

过程与方法

通过观察、比较,归纳分数乘整数的计算方法,培养学生的抽象概括能力。

情感、态度与价值观

1、引导学生探究知识间的内在联系,激发学生的学习兴趣。

2、在理解算理的同时体会数学知识的魅力,领略数学的美。

备重点难点

重点:理解并掌握分数乘整数的意义和计算方法。

难点:明确分数乘整数的算理。

备知识讲解

知识点:分数乘整数的意义及计算方法

知识回顾:同分母分数相加,分母不变,分子相加。

问题导入:小新、爸爸、妈妈一起吃一个蛋糕,每人吃个,3人一共吃多少个?(教材2页例1)

过程讲解

1、理解题意

(1)理解关键语句的含义。

题中的“小新、爸爸、妈妈一起吃一个蛋糕,每人吃个”意思是说每人吃了整个蛋糕的。

(2)确定标准量(单位“1”)和比较量。

每人吃了整个蛋糕的,是把整个蛋糕看作标准量(单位“1”),把每人吃的份数看作比较量。

(3)借助示意图理解题意。

①画标准量:画一个圆表示标准量(单位“1”),如图一。

②画比较量:把表示标准量(单位“1”)的圆平均分成9份,其中的2份就表示每人吃的份数,如图二。

③明确所求问题:求3人一共吃多少个,就是求3个是多少,如图三。

图一图二图三

2、根据题意列出加法算式

++

3、探究分数乘整数的意义

重点提示

3个相加,用乘法也可以表示成3×。

(1)转化:将加法算式转化为乘法算式。

++3个加数相同转化为乘法算式×3

方法提示

求一个分数的`几倍是多少或求几个相同分数的和是多少,就用这个分数乘“几”。

(2)明确意义:从算式中可以看出×3表示求3个相加的和是多少,也可以表示求的3倍是多少。也就是在这种情况下与整数乘法的意义完全相同。

4、探究×3的计算方法

(1)借助示意图计算出结果。

思想方法解读

借助示意图理解题意,其中蕴涵着数形结合思想。把数量关系和空间形式结合起来去分析问题和解决问题就是数形结合思想。

(2)计算加法算式的结果。

++===

(3)计算乘法算式的结果。

×3=++====

(4)观察对比。

(5)分数乘整数的简便计算。

分数乘整数时,如果分母和整数能约分,可以先约分,再计算,这样比较简便。例如:×3=。

5、解决问题

灵活应用

分数乘整数的计算方法对于整数乘分数同样适用。例如:5×==。

×3=

答:3人一共吃个。

归纳总结

1、分数乘整数的意义与整数乘法的意义相同,都是求几个相同加数的和的简便运算。

2、分数乘整数的计算方法:用分子乘整数的积作分子,分母不变。能约分的可以先约分,再计算,结果不变。

拓展提高

1、带分数乘整数的计算方法:先把带分数化成假分数,再按照分数乘整数的计算方法进行计算。例如:3×2=×2=。

2、分数乘整数的简便算法也适用于分数连乘。例如:×10×3,在计算的过程中,分数的分母9和整数3能约分,可以先约分,再计算。

计算过程:×10×3=

篇14:《分数乘分数》教学反思

《分数乘分数》一课上完后,我无比的激动,因为我的尝试得到了成功。

当然也有好多不足之处。这节课上下来,自己感到在以下三方面要加以反分数乘分数的算理。即为什么分母相乘的积做分母,分子相乘的积做分子(实际上是数出来的)。的确,我对单位1的考虑略有欠缺,这一难点未能以重视,因此学生即使会计算了也不清楚为什么折纸就可以找到原因了。

其次教师的指令不够清楚。教师在指导学生研究分数单位相乘时,试图体现教学的层次(在学生做的前测中可以发现有五分之二的学生已经会算此内容了),想对层次好的学生放得开些,就把原来的设计由教师发出清晰的指令改为让需要帮助的学生看提示,也不加指导。问题就出在这里:学生不来看你的提示,不按你的要求来折,效果大折扣。

第三,师生在课堂上的交流非常重要。我们看到一些好的课师生配合很和谐,而有些课上得很差是因为学生不来理你,这其实就是教师的功力深浅所在。好的老师会让学生明白要干什么,说什么;也会知道学生在想什么,在说什么,会耐心地听完学生的回答。而我往往不是诚心诚意地听学生的说话,不知道应该怎样使学生奇怪的回答与自己的轨道结合起来。比如:学生提出半个苹果的一半可以列式为1自己就未加以肯定,这是非常遗憾的。因为他的回答非常好,可以帮助理解单位1。可以追问:第一个和第二个意思是不是一样的?多可惜。

又比如:学生已经说出的算式,自己虽然也肯定了他,但为什么不肯把这个算式写到黑板上呢?再追问一句:你们认为他是怎么想的?你能折出来吗?不是很好吗?错失了良机。

最遗憾的是:有个学生上来演示,他是先计算再折纸的,而我却没有发现。教师应该有快速地提取和处理信息的能力,这是必须磨练的基本功。

篇15:《分数乘分数》教学反思

《分数乘分数》的教学重点是理解分数乘分数的意义,探索分数乘分数的计算算理与法则。

在教学实践中继续采用“数形结合”的数学方法,帮助学生达成以上两个教学目标。

整个的教学过程分为四个层次:

一、引导学生通过用图形表示分数的意义,再用算式表示图形,深化“求一个数的几分之几是多少”的分数乘法意义,感知分数乘分数的计算过程。

二、先教学例4,以1/2×1/4和1/2×3/4为例,让学生先根据图形理解算式的意义,再根据图形写出计算结果。

三、然后教学例5,以2/3×1/5和2/3×4/5为例,让学生根据算式在图中画斜线表示计算结果,这样做的目的是通过“以形论数”和“以数表形”的过程让学生巩固分数乘法的意义,体会分数乘分数的计算过程。

四、最后通过观察例4和例5算式和结果,概括出分数乘分数的计算方法。

通过今天的课,我对数形结合的思想有了更进一步的理解。由于分数乘法的意义和计算法则的道理比较抽象,学生理解起来不是很容易,所以利用图形使抽象的问题直观化,在本单元教学中就显得特别重要了。纵观教材,数形结合思想的渗透也有不同的层次,数形结合能帮助学生从具体问题中抽象出数学问题;在本学期的.分数乘分数中是利用直观的几何图形,帮助学生理解分数乘分数的计算道理;接下来的分数乘法应用中,我们还将利用线段图帮助学生理解分数乘法应用的问题;使用的图形越来越简约体现了教材对数形结合思想渗透的一个过程。

数形结合的过程不是简单的抽象变为直观的过程,而是抽象变为直观之后,再从直观变为抽象的一个过程,也就是要将“以形论数”和“以数表形”两个方面有机的结合起来。只有完整的让学生经历数与形之间的“互动”,才能使他们感知“数形结合”,才能使他们能在解决问题时自觉地应用“数形结合”的方法。

篇16:《分数乘分数》教学反思

他的教学思路独特,简洁。出示几个简单的分数,让学生自由组合成乘法算式并尝试计算,在有了多种方法算出答案后进行横向比较,得出分子相乘的积做分子,分母相乘的积作分母与化成小数进行计算最后的得数是相同的,由此说明分子相乘的积做分子,分母相乘的积作分母这种方法是可以计算。然后又通过纵向比较得出,分子相乘的积做分子,分母相乘的积作分母的方法计算分数乘法不仅适合全部这种类型的计算,而且比较简便。紧接着徐老师就放手让学生通过画图来验证这种方法为什么可行,给予学生明确的探究目的,提供充足的探究时间与空间。与前一节课有着截然不同的探索步骤。

探索步骤的不同,是因为今天有了前一节课做铺垫。课一开始徐老师就展示了整数与分数的乘法,然后就很自然地引出分数乘分数的一道题,让新知识与旧知识相联系,在学生原有的知识和经验上,发展新知识,促进知识的有效迁移,促使学生形成优化的认知结构。分数乘法的计算方法就水到渠成,但为什么可以这样来计算,恰恰是学生所不理解的,所以这才是本节课的重点与难点。如何突破难点,徐老师采用了最简单而有效的方法画图验证,从中也让学生有探究的需求,让我们刚刚得到的抽象知识用直观的图画,形象地展示、说明。这是一个学生主动探索、解释新知的过程,是思维的火花不断碰撞的过程。在这个过程中,教师不断引导着学生进行反复的验证,说明,解释,然后归纳,概括,最终反映出分子相乘的积做分子,分母相乘的积作分母算法的真正含义,不光突破了难点,同时培养了学生的探索兴趣和探究精神。最可贵的是,在懂得这个算理后,徐老师引着学生又回到起点,看看整数成分数的乘法,原来它也适用这种方法,使学生更加了解分子相乘的积做分子,分母相乘的积作分母是反映计算分数乘法普遍规律的一般计算法则。

虽然学生要学的知识是前人发现的,书上写的明明白白,但对于学生来说,仍是全新的,未知的,需要每个人再现类似的创造过程来形成,因为学生对数学知识的学习并不是简单的接受,而必须以再创造的方式进行;作为数学教师也不能简单地将知识直接灌输给学生,而是要让学生经历这个再创造的过程。由此可见,在新知生长点的教学环节中,留下适当时空,让学生进行创造活动,很必要。

篇17:《分数乘分数》教学反思

分数乘法计算对于学生而言是新的内容,它的计算方法与整数、小数的计算方法有很大区别,记住分数乘法的计算法则并不困难,但让学生理解分数乘法的算理,尤其是分数乘分数的算理,是本节课教学的难点。

《标准》指出,有效的学习活动不能单纯地依赖模仿与记忆。教学中要改变以往以例题、示范、讲解为主的教学方式,改变以记忆法则,机械训练为主的学习方式,引导学生投入到探索与交流的学习活动之中。

学习这节课前,我先让学生自学,让他们试着去解决课本上的几个问题:

课上让学生交流探索的结果。我发现大部分学生能在前一问的基础上可以类推出分数乘分数的方法。

有的学生采用了折纸的方法,一步步的给大家讲解,效果也不错。

学生讲解的头头是道,说实话,这节课给了我很大的震撼,千万不要低估学生的能力,该放手时一定要放手让学生去做,很多时候他们会给你意想不到的惊喜!

整节课的`大部分时间都是安排学生的探究、讨论活动,让学生在讨论研究中提出猜想,最后在举例中检验猜想后达成共识,得到分数乘分数的计算法则,理解算理,由于学生的探究花了大量时间,最后只是对法则进行了总结,从时间的分配上来说,后面的巩固练习时间很少,学生对分数乘分数到底掌握到什么情况心中没数。这让我想到,我们在课堂上无论事先设计的多么完善,都要根据学生的实际情况,跟着学生的思路走,而不能死套教案,一定要灵活处理。

遗憾的地方:能讲解的学生毕竟是少数,大部分的孩子是听会的,个别学生对算理仍然不能很好的理解,对后续学习会有一定影响,对这部分学生要多帮助、多鼓励,树立他们的信心!

★ 《分数乘分数》教学反思

★ 《分数乘分数》说课稿

★ 分数教学设计

★ 分数教学设计

★ 分数教学设计

★ 分数乘整数教学反思

★ 新人教版分数乘整数教学设计

★ 分数乘整数练习题

★ 分数除法教学设计

★ 分数乘法例2教学设计新人教版

标签:

今日热点

热点排行

最近更新

所刊载信息部分转载自互联网,并不代表本网赞同其观点和对其真实性负责。邮箱:5855973@qq.com

联系我们| 中国品牌网 | 沪ICP备2022005074号-18 营业执照  Copyright © 2018@. All Rights Reserved.